CSC411 Tutorial #5
Neural Networks

Oct, 2017
Shengyang Sun
ssy@cs.toronto.edu

*Based on the lectures given by Professor Sanja Fidler and the prev. tutorial by
Boris lvanovic, Yujia Li.

mailto:csc411ta@cs.toronto.edu

High-Level Overview

A Neural Network is a function!

* It (generally) comprised of:

— Neurons which pass input values through
functions and output the result

— Weights which carry values between neurons
* We group neurons into layers. There are 3

main types of layers:

— Input Layer

— Hidden Layer(s)

— Output Layer

High-Level Overview

input layer

hidden layer 1 hidden layer 2

Figure: A 3-layer neural net with 3 input units, 4 hidden units in the first and second
hidden layer and 1 output unit

@ Naming conventions; a N-layer neural network:

» N — 1 layers of hidden units
» One output layer

[http://cs231n.github.io/neural-networks-1/]

Neuron Breakdown

weight
X1 f(}:wﬂa+b)

activation

X2

R
N

neuron

x3

P>

Neuron Breakdown

L0 wo

*@® synapse
axon from a neuron
woLo

cell body f (Zw;:r; 4 b)
T Zwiwi +b f : =
: output axon
activation
function

Wo 9

Figure: A mathematical model of the neuron in a neural network

[Pic credit: http://cs231n.github.io/neural-networks-1/]

Activation Functions

Most commonly used activation functions:

1
1+exp(—2z)

@ Tanh: tanh(z) = Z’;‘;ﬁﬁ;;:ﬁﬁfig

@ Sigmoid: o(z) =

@ RelLU (Rectified Linear Unit): ReLU(z) = max(0, z)

Most popular recently
for deep learning

Sigmoid: Kz) = 1/(1+exp(-2)) Tanh: §(z) = [exp(2)-exp(-2)] / [exp(z)+exp(-2)]) ‘ RelLU: f(z) = max(0Q, z)
. 1= v 2 ¥ v .

v

Representation Power

@ Neural network with at least one hidden layer is a universal approximator
(can represent any function).
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

3 hidden neurons 6 hidden neurons 20 hidden neurons

@ The capacity of the network increases with more hidden units and more
hidden layers

What does this mean?

* Neural Networks are POWERFUL, it’s exactly
why with recent computing power there was
a renewed interest in them.

BUT

« “With great power comes great overfitting.
— Boris Ivanovic, 2016

)

* Last slide, “20 hidden neurons” is an
example.

How to mitigate this?

 Stay Tuned!

* First, how do we even use or train neural
networks?

Training Neural Networks (Key ldea)
@ Find weights:

N
w* = argmin Z loss(o(™, t(")
W n=1

where o = f(x;w) is the output of a neural network
@ Define a loss function, eg:

» Squared loss:), %(o,((") — tk"))2 (Regression)

» Cross-entropy loss: — >, t,((") log o,((") (Classification)

@ Gradient descent:
OE

Owt

where 7 is the learning rate (and E is error/loss)

t+1

wi =wh—n

Training Compared to Other Models

* Training Neural Networks is a NON-
CONVEX OPTIMIZATION PROBLEM.

* This means we can run into many local
optima during training.

Training Neural Networks
(Implementation)

* We need to first perform a forward pass

* Then, we update weights with a
backward pass

Forward Pass (AKA “Inference”)

input layer
hidden layer

@ Output of the network can be written as:

D
hi(x) = f(Vjo-l—ZXiVji)
i=1

J
ok(x) = g(Wk0+Zhj(x)ij)

(j indexing hidden units, k indexing the output units, D number of inputs)
@ Activation functions f, g: sigmoid/logistic, tanh, or rectified linear (ReLU)

o(2) 1 exp(z) — exp(—2z)

=1 op(—2)’ tanh(z) = oxp(z) T exp(—2)’ ReLU(z) = max(0, z)

Backward Pass (AKA “Backprop.”)

@ Compute error derivatives in each hidden layer from error derivatives in layer
above. [assign blame for error at k to each unit j according to its influence
on k (depends on wyj)]

|' (3 — |
N \fq k /S N
“OE N\ VR
I J
dh. /
N \\ _

@ Use error derivatives w.r.t. activities to get error derivatives w.r.t. the
weights.

Learning Weights during Backprop

* Do exactly what we’ve been doing!

 Take the derivative of the error/cost/loss
function w.r.t. the weights and minimize
via gradient descent!

Gradient descent: ‘
t+1 _ t ()E

v, — W' —7
lawt

where 7 is the learning rate (and E is error/loss)

Useful Derivatives

0, ifz<0

name function derivative
Sigmoid o(z) = 1+exp() o(z)-(1—o0(2))
Tanh tanh(z) = SEE-=E—1) 1/ cosh?(z)
RelLU ReLU(z) = max(0, z) {1’ tz>0

Preventing Overfitting

Standard ways to limit the capacity of a neural net:
— Limit the number of hidden units.
— Limit the size of the weights. weight decay
— Stop the learning before it has time to overfitEarty stop

Limiting the Size of the Weights

Weight-decay involves adding

an extra term to the cost C=E+7 E W
function that penalizes the
squared weights. ()C oE
- Keeps weights small — =71 ;\,W
ow; aw

unless they have big
error derivatives.

oC | OF

when — =0, w; =-
C ow; | A ow;

The Effects of Weight-Decay

e [tprevents the network from using weights that it does not
need

- This can often improve generalization a lot.
— It helps to stop it from fitting the sampling error.

- It makes a smoother model in which the output changes
more slowly as the input changes.

e But, if the network has two very similar inputs it prefers to

put half the weight on each rather than all the weight on
one = other form of weight decay?

O O
wW/2 w/2 " 0
7y I

Early Stopping

e [fwe have lots of data and a big model, its very
expensive to keep re-training it with different
amounts of weight decay

e [tis much cheaper to start with very small weights
and let them grow until the performance on the
validation set starts getting worse

e The capacity of the model is limited because the
weights have not had time to grow big.

Why Early Stopping Works

e When the weights are very
small, every hidden unit is in

its linear range. outputs

- So a net with a large layer
of hidden units is linear.

:>O
O

— It has no more capacity

than a linear net in which ONORONONONO

the inputs are directly
connected to the outputs!

O =

e Asthe weights grow, the O
hidden units start using their
non-linear ranges so the
capacity grows.

iInputs

Neural Network Visualizations

» http://playground.tensorflow.org
» http://scs.ryerson.ca/~aharley/vis/conv/

http://playground.tensorflow.org
http://scs.ryerson.ca/~aharley/vis/conv/

Questions

